Skip to content Skip to sidebar Skip to footer

Multi-class Logistic Regression From Scratch

I am trying to implement from scratch the multiclass logistic regression but my implementation returns bad results. I believe the definition of the gradient function and the cost f

Solution 1:

I think it is now working with the following code.

import numpy as np
from scipy.optimize import minimize
from sklearn import preprocessing


class myLR():

def __init__(self, reltol=1e-8, maxit=1000, opt_method=None, verbose=True, seed=0):

    self.maxit = maxit
    self.reltol = reltol
    self.seed = seed
    self.verbose = verbose
    self.opt_method = opt_method

    self.lbin = preprocessing.LabelBinarizer()

def w_2d(self, w, n_classes):
    return np.reshape(w, (n_classes, -1))


def softmax(self, W, X):
    a = np.exp(X @ W.T)
    o = a / np.sum(a, axis=1, keepdims=True)
    return o

def squared_norm(self, x):
    x = np.ravel(x, order='K')
    return np.dot(x, x)

def cost(self, W, X, T, n_samples, n_classes):
    W = self.w_2d(W, n_classes)
    log_O = np.log(self.softmax(W, X))
    c = -(T * log_O).sum()
    return c / n_samples

def gradient(self, W, X, T, n_samples, n_classes):
    W = self.w_2d(W, n_classes)
    O = self.softmax(W, X)
    grad = -(T - O).T.dot(X)
    return grad.ravel() / n_samples

def fit(self, X, y=None):   
    n_classes = len(np.unique(y))
    n_samples, n_features = X.shape

    if n_classes == 2:
        T = np.zeros((n_samples, n_classes), dtype=np.float64)
        for i, cls in enumerate(np.unique(y)):
            T[y == cls, i] = 1
    else:
        T = self.lbin.fit_transform(y)

     np.random.seed(self.seed)
     W_0 = np.random.random((self.n_classes, self.n_features))
        
    options = {'disp': self.verbose, 'maxiter': self.maxit}
    f_min = minimize(fun=self.cost, x0=W_0,
                     args=(X, T, n_samples, n_classes),
                     method=self.opt_method,
                     jac=self.gradient,
                     options=options)

    self.coef_ = self.w_2d(f_min.x, n_classes)
    self.W_ = self.coef_

    return self

def predict_proba(self, X):
    O = self.softmax(self.W_, X)
    return O

def predict(self, X):
    sigma = self.predict_proba(X)
    y_pred = np.argmax(sigma, axis=1)
    return y_pred

Post a Comment for "Multi-class Logistic Regression From Scratch"