Python Pandas: Dataframe As A Lookup Table
This is a preprocessed DataFrame, with columns representing frequency and success values for specific column. For example: Column A is associated with FREQ_A and SUCCESS_A respecti
Solution 1:
df1 = pd.DataFrame({
'A': [1, 2],
'B': ['B', 'A'],
'FREQ_A': [1, 1],
'FREQ_B': [1, 1],
'Gold': [0, 1],
'SUCCESS_A': [0.0, 0.01],
'SUCCESS_B': [0.0, 0.01]})
df2 = pd.DataFrame({'A': [1, 2], 'B': ['A', 'B']})
result = (df2
.merge(df1[['A', 'FREQ_A', 'SUCCESS_A']], on='A')
.merge(df1[['B', 'FREQ_B', 'SUCCESS_B']], on='B'))
>>> result
A B FREQ_A SUCCESS_A FREQ_B SUCCESS_B
01 A 10.0010.0112 B 10.0110.00
EDIT
For an arbitrary dataframe:
result = pd.concat(
[df2, pd.concat([df2[[col]].merge(
df1[[col, 'FREQ_' + str(col), 'SUCCESS_' + str(col)]],
on=col, how='left').iloc[:, 1:]
for col in df2], axis=1)],
axis=1)
Post a Comment for "Python Pandas: Dataframe As A Lookup Table"