How To Use Shared_name On Initializable_iterator
In distributed tensorflow, I need processing input datas on one worker and consuming them on other different session. 'make_initializable_iterator' have an undocumented parameter '
Solution 1:
The iter_init_op
might be what you are searching for:
# this's how a input pipeline usually looks likencores = multiprocessing.cpu_count()
dataset = tf.data.Dataset.from_tensor_slices(file_list))
dataset = dataset.map(augmentation_function, num_parallel_calls=ncores)
batch = dataset.shuffle(batch_size).batch(batch_size).prefetch(5)
# construct iteratorit = batch.make_initializable_iterator(shared_name='shared_iterator')
iter_init_op = it.initializer # you call this operation within session to initialiser
Within the session:
with tf.Session() as sess:
...
for epoch inrange(nb_epoch):
# init iterator during epoch
sess.run(iter_init_op)
Baca Juga
- Data Api : Valueerror: `y` Argument Is Not Supported When Using Dataset As Input
- Converting A List Of Unequally Shaped Arrays To Tensorflow 2 Dataset: Valueerror: Can't Convert Non-rectangular Python Sequence To Tensor
- Why The Model Is Training On Only 1875 Training Set Images If There Are 60000 Images In The Mnist Dataset?
Post a Comment for "How To Use Shared_name On Initializable_iterator"