Fill Missing Values Of One Column From Another Column In Pandas
I have two columns in my pandas dataframe. I want to fill the missing values of Credit_History column (dtype : int64) with values of Loan_Status column (dtype : int64).
Solution 1:
You can try fillna
or combine_first
:
df.Credit_History = df.Credit_History.fillna(df.Loan_Status)
Or:
df.Credit_History = df.Credit_History.combine_first(df.Loan_Status)
Sample:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Credit_History':[1,2,np.nan, np.nan],
'Loan_Status':[4,5,6,8]})
print (df)
Credit_History Loan_Status
01.0412.052 NaN 63 NaN 8
df.Credit_History = df.Credit_History.combine_first(df.Loan_Status)
print (df)
Credit_History Loan_Status
01.0412.0526.0638.08
Post a Comment for "Fill Missing Values Of One Column From Another Column In Pandas"