Reshaping A Pandas DataFrame Into Stacked/record/database/long Format
What is the best way to convert a pandas DataFrame from wide format into stacked/record/database/long format? Here's a small code example: Wide format: date hour1 hour2 ho
Solution 1:
You can use melt
to convert a DataFrame from wide format to long format:
import pandas as pd
df = pd.DataFrame({'date': ['2012-12-31', '2012-12-30', '2012-12-29', '2012-12-28', '2012-12-27'],
'hour1': [9.18, 13.91, 12.97, 22.01, 11.44],
'hour2': [-0.1, 0.09, 11.82, 16.04, 0.07]})
print pd.melt(df, id_vars=['date'], value_vars=['hour1', 'hour2'], var_name='hour', value_name='price')
Output:
date hour price
0 2012-12-31 hour1 9.18
1 2012-12-30 hour1 13.91
2 2012-12-29 hour1 12.97
3 2012-12-28 hour1 22.01
4 2012-12-27 hour1 11.44
5 2012-12-31 hour2 -0.10
6 2012-12-30 hour2 0.09
7 2012-12-29 hour2 11.82
8 2012-12-28 hour2 16.04
9 2012-12-27 hour2 0.07
Solution 2:
You could use stack
to pivot the DataFrame. First set date
as the index column:
>>> df.set_index('date').stack()
date
2012-12-31 hour1 9.18
hour2 -0.10
hour3 -7.00
hour4 -64.92
2012-12-30 hour1 13.91
hour2 0.09
hour3 -0.96
hour4 0.08
...
This actually returns a Series with a MultiIndex. To create a DataFrame like the one you specify you could just reset the MultiIndex after stacking and rename the columns:
>>> stacked = df.set_index('date').stack()
>>> df2 = stacked.reset_index()
>>> df2.columns = ['date', 'hour', 'price']
>>> df2
date hour price
0 2012-12-31 hour1 9.18
1 2012-12-31 hour2 -0.10
2 2012-12-31 hour3 -7.00
3 2012-12-31 hour4 -64.92
4 2012-12-30 hour1 13.91
5 2012-12-30 hour2 0.09
6 2012-12-30 hour3 -0.96
7 2012-12-30 hour4 0.08
...
Post a Comment for "Reshaping A Pandas DataFrame Into Stacked/record/database/long Format"