Pyplot: Adding Point Projections On Axis
I can get a graph drawn using the plot function. But I would like to highlight some 'special' points by having the projections drawn on the axes and putting text on both the point
Solution 1:
You can use annotate
with a blended transformation:
import matplotlib.pyplot as plt
plt.plot([1,2], [2,4], label='data')
plt.plot([1.7], [3.4], marker='o')
plt.grid(True)
x,y = 1.7, 3.4
arrowprops={'arrowstyle': '-', 'ls':'--'}
plt.annotate(str(x), xy=(x,y), xytext=(x, 0),
textcoords=plt.gca().get_xaxis_transform(),
arrowprops=arrowprops,
va='top', ha='center')
plt.annotate(str(y), xy=(x,y), xytext=(0, y),
textcoords=plt.gca().get_yaxis_transform(),
arrowprops=arrowprops,
va='center', ha='right')
It's not perfect as the you'll still may want to manually adjust the axis coordinates (e.g. -0.05
instead of 0
) to set the labels a bit off the axes.
Solution 2:
Something like that maybe is the answer that you are searching for. https://stackoverflow.com/a/14434334/14920085
y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
z = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123] #text that you want to print at the points
fig, ax = plt.subplots()
ax.scatter(z, y)
ax.set_ylabel('y')
ax.set_xlabel('x')
for i, txt in enumerate(n):
ax.annotate(txt, (z[i], y[i]))
Solution 3:
You need to play around with xlim
and ylim
a bit.
For me this worked:
import matplotlib.pyplot as plt
import numpy as np
if __name__ == "__main__":
X = np.linspace(-.5, 3, 100)
Y = 15000 - 10 * (X - 2.2) ** 2
Xp = X[-10]
Yp = Y[-10]
plt.plot(X, Y, label='data')
plt.plot(Xp, Yp, marker='o')
plt.vlines(Xp, min(Y), Yp, linestyles='dashed')
plt.hlines(Yp, min(X), Xp, linestyles='dashed')
plt.grid(True)
plt.xlim(min(X), None)
plt.ylim(min(Y), None)
plt.show()
Post a Comment for "Pyplot: Adding Point Projections On Axis"