Replacing Masked Values (--) With A Null Or None Value Using Fiil_value From Ma Numpy In Python
Is there a way to replace a masked value in a numpy masked array as a null or None value? This is what I have tried but does not work. for stars in range(length_masterlist_final):
Solution 1:
Use Astropy:
>>> from pandas import DataFrame
>>> from astropy.table import Table
>>> import numpy as np
>>>
>>> df = DataFrame()
>>> df['a'] = [1, np.nan, 2]
>>> df['b'] = [3, 4, np.nan]
>>> df
a b
0 1 3
1 NaN 4
2 2 NaN
>>> t = Table.from_pandas(df)
>>> t
<Table masked=True length=3>
a b
float64 float64
------- -------
1.0 3.0
-- 4.0
2.0 --
>>> t.write('photometry.csv', format='ascii.csv')
>>>
(astropy)neptune$ cat photometry.csv
a,b
1.0,3.0
,4.0
2.0,
You can specify arbitrary transformations from table values to output values using the fill_values
parameter (http://docs.astropy.org/en/stable/io/ascii/write.html#parameters-for-write).
Post a Comment for "Replacing Masked Values (--) With A Null Or None Value Using Fiil_value From Ma Numpy In Python"